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Abstract: It is common practice to calculate large numbers
of molecular descriptors, apply variable selection procedures
to reduce the numbers, and then construct multiple linear
regression (MLR) models with biological activity. The signifi-
cance of these models is judged using the usual statistical tests.
Unfortunately, these tests are not appropriate under these
circumstances since the MLR models suffer from “selection
bias”. Experiments with regression using random numbers
have generated critical values (F.y) with which to assess
significance.

The motivation for this work came from the literature
that was collected while preparing a review on variable
selection.! Thirty years ago almost all QSAR studies
were carried out using multiple linear regression (MLR)
as the modeling “engine” and tabulated substituent
constants to describe changes in chemical structure.
There were, of course, exceptions to this. Some other
statistical methods such as discriminant analysis were
in use, and molecular connectivity descriptors provided
an alternative to substituent constants. Dissatisfaction
with the constraints of MLR and the deficiencies of
substituent constants as molecular descriptors led to the
increasing use of alternative analytical methods and
computational chemistry software to characterize struc-
ture. The situation today is that there are dozens of
mathematical and statistical methods used to create
QSAR models, and the modeler has a choice of thou-
sands of different molecular descriptors from which to
create the models.2 Nevertheless, MLR is still a popular
method, as it does have advantages over other modeling
techniques. One of its major advantages is that it is very
easy to interpret the resulting regression equations.
Another advantage is that it is possible to judge the
quality of regression models by statistical tests. Unfor-
tunately, these tests apply only if certain conditions are
met.

It was recognized in this journal,® 25 years ago, that
the consideration of large numbers of variables for
inclusion in a supervised learning method* such as MLR
increased the danger of chance correlations. Topliss
demonstrated that the more descriptors that are con-
sidered for inclusion in a model, the greater the likeli-
hood that a model may arise by chance. Although this
was widely accepted, the guidelines were often misin-
terpreted and taken to mean that a certain number of
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data points were required for every descriptor in a
model. This was not what the paper suggested but
rather that a certain ratio of data points to descriptors
considered should be maintained in order to reduce the
possibility of chance correlations. Furthermore, it was
assumed that the standard statistical tests, such as the
F test, could still be used to assess the quality of MLR
models derived from a subset taken from a larger
number of variables. Unfortunately this is not true.

When an MLR model of a particular size has been
constructed from a set of variables of the same size, then
the F' test can be used to judge its significance. If,
however, the same size model has been constructed by
taking a subset of a larger set of variables, then the
model suffers from what is known as “selection bias”.?
The effect of selection bias is to make the regression
equation appear more significant than it really is. What
this means in practice is that the critical F' values which
are used to judge significance need to be inflated but,
the question is, by how much? We have investigated this
by creating sets of random numbers and then fitting
regression models of varying sizes to these sets of
random data. Simple simulations of the regression of a
single random y variable and three random x variables
were carried out with a Minitab macro. Further regres-
sion simulations were carried out using C++ software
written in-house running on PCs and Silicon Graphics
workstations. This software computes random numbers
based on a normal or uniform distribution and allows
the user to choose the number of cases and the size of
the pool of variables from which regression models are
calculated. Regression models of a particular size may
be computed, or the user may select to calculate all
regression models from size one to a maximum model
size. The number of simulations is also controlled by
the user and in the results reported here was taken to
be 50 000.

In each simulation, one of the variables is selected
as the response (y variable) and the remaining variables
are selected as descriptors (x set). In the case of one term
regression models, the response is regressed against
each one of the x variables in turn, and the best model,
that is to say the model with the best fit, is recorded.
When all the simulations have been run, the values of
the F statistics (Finax) are arranged in an ordered list.
Values of the 10, 5, 2.5, and 1% confidence limits can
be selected from this list by taking the F,.x value that
occurs at the top 10, 5, 2.5 and 1% of the simulations.
For example, in 1000 simulations the 10% F',.x value
would occur at position 900 in the list (90th percentile).
For two-term regression models, the response variable
is regressed against all possible combinations of two
variables of the x set and for higher order models all
possible combinations of the descriptor variables are
examined. The computer time required to run these
experiments rises very rapidly as the size of the models
examined rises and as the pool of variables is increased.
A set of timed runs were shown to fit the model given
in eq 1 where N is the number of possible regression
models (for models of size p from % variables N = k!/
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Figure 1. Distribution of slopes for random selection.
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Figure 2. Distribution of slopes for maximum selection.

(p!(k-p)Y), p is the size of the models, and 7 is the number
of cases generated for the random variables

time(s) = 0.031\V"-951¢0-382p + 0.008n 1)

To illustrate the effect of selection bias, four sets of
25 random numbers were generated, one was chosen
as the y variable, and this was regressed against one of
the x variables chosen at random. The slope, R?, and F
ratio was recorded for this regression. The y variable
was then regressed against all of the x variables and
the slope, R? and F ratio of the best fit recorded. This
process was repeated 1000 times. The results are shown
in Figure 1 where the values of the slope for the random
selection are distributed around a mean of zero. Since
the variables are random numbers, there should be no
correlation between them and this is the expected result.

The distribution of the values of the slope for the
maximum selection, on the other hand, shows a bimodal
distribution as illustrated in Figure 2 with the two
means some distance from zero on the positive and
negative sides.

The distribution of the F ratios (not shown) for the
random choice shows a 95th percentile value of 4.18
which corresponds closely to the tabulated value of the
F distribution. The 95th percentile value for the maxi-
mum fit regressions is equal to 6.65, quite considerably
higher than the tabulated F' distribution value.

Using our in-house software, simulations were per-
formed for a range of the number of observations, n, the
number of variables in a model, p, and the number of
variables in the bucket to choose from, % (see Table 1).
A range of replications were experimented with and it
was found that 50 000 gave an acceptable compromise
between time and precision. Fewer replications gave a
faster completion time but at the expense of increased
variation in the critical values between runs for the
same parameter set up.
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Table 1. Parameter Values Used in the Simulations

values used
10, 20, 30, 40, 50, 75, 100
1,2,3,4,5,6,7,8
5, 10, 20, 50, 100

parameters varied

sample size (n)
model size (p)
bucket size (k)

Table 2. Comparison of Actual, Tabulated, and Simulated F
Values for the Antimycin Data

terms 1 2 3
fit 13.55 18.0 17.5
table 4.62 3.85 3.54
Frax (k) 4.58 3.63 3.48

10 vars 11.06 (11.95) 10.03 (10.07) 9.80 (9.83)
23 13.88 (14.20) 14.85 (14.39) 17.39 (17.17)
53 17.22 (16.87) 21.11 (20.44) 29.73 (29.30)

The Fiax critical values for 5% significance values
were recorded and a power function response surface
fitted to enable the critical values for other combinations
of n, p, and % to be found. This function, shown in eq 2
where N, p, and & have the same meaning as for eq 1,
has been tested using a number of combinations of
parameters, and some of these are reported below for a
typical problem.

31877 0.21
i _29.96n" "N "™ 11.06(n(2)) - 0.97In(n) — 3.97] @)

max 0.82
p

Antimycin Example. This data set,® also known as
the Selwood set, has been used by many other groups
of workers to look at a whole range of different modeling
tools. There are a number of problems with this dataset,
but it serves to illustrate the importance of selection
bias. In the original study 53 descriptors were calculated
which were reduced to 23 based on the intercorrelation
structure (unsupervised). These were further reduced
by supervised selection to result in 10 variables. The
training set consisted of only 16 compounds. Table 2
shows the F values obtained from the analysis in which
one-, two-, and three-term models were fitted.

The second row of Table 2 gives the usual tabulated
critical values of F for 5% significance, and certainly
based on this evidence all three models are highly
significant. The third row of the table shows the Fy.x
values from the simulations when the pool size was the
same as the model size (k = p); these, of course, should
correspond to the tabulated values and, within the
limits of precision of the number of simulations, do.
However, when the number of variables in the pool is
increased, the significance of these models is reduced.
It can be seen that the Fp.x values are considerably
bigger than the tabulated critical values for a pool size
of 10, and for a pool size of 23, only one of the models (p
= 2) might be considered significant. If the selection had
been made using all 53 original variables, none of the
three models would be significant. This result may be
difficult to accept but, with 53 variables to select from,
it is possible to obtain a three variable model using
random numbers which can achieve an observed F as
high as 29.73. The bracketed numbers in Table 2 are
the Fnax values predicted from the power function
response surface and, as can be seen these results for
the most part are reasonable, but there is still room for
improvement.
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Table 3. Upper 5% Points for F Statistic and Fiax Values

cases table F' k=5 10 20 50 100
10 4.76 9.79 24.15 55.0 156.6 326.2
15 3.59 5.8 10.4 17.5 33.0 51.6
20 3.24 4.88 7.89 12.1 19.8 27.7
50 2.81 3.90 5.50 7.4 10.2 12.6
100 2.70 3.64 5.04 6.5 8.6 10.4

So, what does this mean in practice? If MLR models
are constructed from a pool of variables which is the
same size as the model then the standard F tables may
be used to judge significance. If the pool is larger than
the models, and the variables are chosen to maximize
the fit, then use of the standard F tables will give an
overoptimistic impression of the significance of the
model. It is necessary to use critical values of the Fiax
distribution, a selection of which is reported here. It
would be convenient to be able to simply replace
standard F' tables with a set of Fi.x tables, but unfor-
tunately this is not possible because the Fy,.x values are
dependent on the size of the variable pool (k) as shown
in Table 2. To produce “replacement” F' tables would
require four tables, for 1, 2.5, 5, and 10% critical values,
for each size of the variable pool, k. To give an idea of
what effect selection bias has on Fy.x values, Table 3
shows the value of the tabulated upper 5% critical
values for F statistic and corresponding simulated F'yax
results for three-term regression models for different
size variable pools (k) and numbers of cases (n).
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Application of the power function response surface
shown above may be used to obtain F,.x values for any
particular combination of n, p, and k. It is planned to
make this function, or any improvement to it, available
on the Centre for Molecular Design website (www.cmd.
port.ac.uk). Work is in hand to extend the range of
experimental values of Fp,.x in order to investigate and
perhaps improve the fit of this function.
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